ON THE NECESSITY OF A

SUFFICIENT OPTIMALITY CONDITION FOR PURSUIT TIME

PMM Vol. 42, No. 6, 1978, pp. 1006-1015
P. B. GUSIATNIKOV
(Moscow)
(Received February 6, 1976)

A necessary and sufficient condition for the optimality of the upper layer time is derived for one class of linear pursuit problems satisfying local convexity conditions.

1. Let a linear pursuit problem in an n-dimensional Euclidean space R be described by the linear vector differential equation [1-5]

$$
\begin{equation*}
d z / d t=C z-u+v \tag{1.1}
\end{equation*}
$$

(C is a constant nth - order square matrix, $u=u(t) \in P \quad$ and $\quad v=v(t) E^{-}$ Q are vector-valued functions, measurable for $t \geqslant 0$, called the players' controls, $P \subset R$ and $Q \subset R$ are convex compacta) and by the terminal set $M=M_{0}$ $+W_{0}$, where M_{0} is a linear subspace of space R and W_{0} is a compact convex set in a subspace L which is the orthogonal complement to \dot{M}_{0} in R. By π we denote the operator of orthogonal projection onto L (we assume that $v=\operatorname{dim} L$ $\geqslant 2$), by K the unit sphere in L, by $\Phi(t)$ the matrix $e^{t C}$ and by $(a \cdot b)$ the scalar product of vectors $a \in R$ and $b \in R$. Let T_{0} be some fixed positive number. We assume that Conditions $1-3$ in [3] (whose notation, together with that in [4], we retain in the present paper) are fulfilled for problem (1.1); we require the fulfilment of Condition 1 only with respect to $r \in\left(0, T_{0}\right]=I_{0}$ and of Condition 3 only with respect to $t \in\left[0, T_{0}\right]$. By M_{1} and M_{2} we denote linear subspaces in R and by p_{0} and q_{0}, vectors from R such that the linear manifolds $M_{1}+p_{0}$ and $M_{2}+q_{0}$ are carrier manifolds for P and Q, respectively. We set $P_{0}=P-p_{0}$ and $Q_{1}=Q-q_{0}$.

Condition 4. There exist a linear homeomorphism $A: M_{2} \rightarrow M_{1}$ depending analytically on $r \in I_{0}$, a linear homeomorphism $\Pi(r): M_{1} \rightarrow L$ and the functions $f(r)$ and $g(r)$, analytic in $r \in(-\infty,+\infty)$ and positive on I_{0}, such that

$$
\begin{gather*}
\pi(r) u \equiv f(r) \Pi(r) u^{*}+p_{0}(r), \quad \pi(r) v \equiv g(r) \Pi(r) A v^{*}+q_{0}(r) \tag{1.2}\\
\pi(r) \equiv \pi \Phi(r), \quad u^{*}=u-p_{0} \Subset P_{0}, \quad v^{*}=v-q_{0} \in Q_{1} \\
p_{0}(r)=\pi(r) p_{0}, \quad q_{0}(r)=\pi(r) q_{0} \quad \forall u \in P, \quad v \in Q, \quad r \in I_{0}
\end{gather*}
$$

From relations (1.2) it follows that the boundaries of sets $P_{0} \subset M_{1}$ and $Q_{0}=$ $A Q_{1} \subset M_{1}$ are surfaces locally convex in M_{1}, and, if $\psi \in K_{1}$ (where K_{1} is
the unit sphere in M_{1}) and $p(\psi)$ and $q(\psi)$ are vectors maximizing the expressions $(\psi \cdot p), p \in P_{0}$, and $(\psi \cdot q), q \in Q_{0}$, respectively, then vectors $p(\psi)$ and $q(\psi)$ ate unique and
$u(r, \varphi) \equiv p(\Gamma(r, \varphi))+p_{0}, \quad v(r, \varphi) \equiv A^{-1} q(\Gamma(r, \varphi))+q_{0} \quad(1.3)$
$\Gamma(r, \varphi) \equiv \Pi^{*}(r) \varphi /\left|\Pi^{*}(r) \varphi\right|, \quad \Pi^{*}(r): L \rightarrow M_{1}$
$\forall \varphi \in K, \quad r \in I_{0}$
Here II* (r) is a linear homeomorphism depending analytically on $r \in I_{0}$ adjoint to $\Pi(r)$, i. e., giving the equality

$$
(x \cdot \Pi(r) y) \equiv\left(\Pi^{*}(r) x \cdot y\right), \quad \forall r \in I_{0}, \quad x \in L, \quad y \in M_{1}
$$

Let

$$
w_{*}(r)=\pi(r) P \ddot{*} \pi(r) Q, \quad \bar{w}(r)=f(r) P_{0} * g(r) Q_{0}
$$

Then (see $[7,8]$)

$$
w_{*}(r) \equiv \Pi(r) \bar{w}(r)+\Delta(r), \quad \Delta(r)=p_{0}(r)-q_{0}(r)
$$

It is well known [9] that when Conditions 1-4 are fulfilled the condition of total sweep

$$
\begin{equation*}
\bar{w}(r)+g(r) Q_{0} \equiv f(r) P_{0}, \quad r \in I_{0} \tag{1.4}
\end{equation*}
$$

is sufficient for the global [4] optimality of time $T(z) \leqslant T_{0}$, constructed in [5].
Condition 5 . There exist a v-dimensional linear subspace $M_{3} \subset R$, a linear homeomorphism $B: M_{3} \rightarrow M_{1}$ and a function $k(r)$ analytic in $r \in(-$ $\infty,+\infty)$, such that the triple $x=\{f(r), g(r), k(r)\}$ is linearly independent on I_{0} and such that

$$
\pi(t) w=k(t) \Pi(t) B w, \quad \forall t \in I_{0}, \quad w \in M_{3}
$$

2. Theorem 1. Let Conditions $1-5$ be fulfilled for problem (1.1). Then the total sweep condition is a necessary condition for the global optimality of time $T(z) \leqslant T_{0}$.

The proof of Theorem 1 is carried out in several stages and is based on Theorem 2 in [8].
3. We set

$$
\begin{aligned}
& p(\varphi, \psi)=(\varphi \cdot p(\varphi)-p(\psi)), \quad q(\varphi, \psi)=(\varphi \cdot q(\varphi)-q(\psi)) \\
& h(\varphi, \psi)=q(\varphi, \psi) / p(\varphi, \psi), \quad \alpha=\sup h(\varphi, \psi)
\end{aligned}
$$

(the sup is taken over all $\varphi, \psi \in K_{1}, \varphi \neq \psi$). In [8] it was shown that a point φ_{0} and a local coordinate system $\bar{s}=\left(s^{2}, \ldots, s^{v}\right)$ in its neighborhood $O_{\varphi_{0}} \subset$ K_{1} with origin O at point φ_{0} exist such that

$$
\begin{align*}
& \varphi=\varphi(\bar{s})=\varphi\left(s^{2}, \ldots, s^{v}\right), \quad \varphi \in O_{\varphi_{0}}, \quad \varphi(0)=\varphi_{0} \tag{3,1}\\
& q_{22}(\varphi(0))=\alpha p_{22}(\varphi(0)) \\
& q_{i j}(\varphi(\bar{s}))=\left(\varphi_{i}(\bar{s}) \cdot \frac{\partial q(\varphi(\bar{s}))}{\partial s^{j}}\right), \quad p_{i i}(\varphi(\bar{s}))=\left(\varphi_{i}(\bar{s}) \cdot \frac{\partial p(\varphi(\bar{s}))}{\partial s^{j}}\right) ; \\
& \varphi_{i}(\bar{s})=\frac{\partial \varphi(\bar{s})}{\partial s^{i}}, \quad i, j=2, \ldots, v .
\end{align*}
$$

Also in [8] it was proved that the total sweep (1.4) obtains if and only if

$$
m(r) \geqslant 1, \quad m(r)=f(r) /(\alpha g(r)), \quad r \in I_{0}
$$

Assumption 1. There exist $0<\tau<\tau_{1} \leqslant T_{0}$ such that $m(r) \geqslant 1$, $r \in(0, \tau]$, and $m(r)<1, r \in\left(\tau, \tau_{1}\right]$.

Note 1. Because $m(r)$ is analytic we can find $\tau_{2} \in\left(\tau, \tau_{1}\right)$, such that $m^{\prime}(r)<0, r \in \Gamma \equiv\left(\tau, \tau_{2} \mathrm{~J}\right.$.

It will be shown in Paragraphs 4-6 that when Assumption 1 and the hypotheses of Theorem 1 are fulfilled we can find a point z_{*}, in space R, for which the time $T\left(z_{*}\right)<T_{0}$ is not optimal.
4. Lemma 1. Let $\theta \in\left(\tau, \tau_{2}\right)$. Then for any sufficiently small $\boldsymbol{\tau}_{0} \in(0$, $\tau), \theta+\tau_{0} \in \Gamma$, the determinant $\Delta=\Delta_{1}\left(\theta+\tau_{0}\right) \neq 0$ (here $\Delta_{1}(t)$ is the Wronskian for the system of functions $f(t), g(t)$ and $k(t))$ and the function

$$
R(t)=f\left(t+\tau_{0}\right) g\left(\theta+\tau_{0}\right)-f\left(\theta+\tau_{0}\right) g\left(t+\tau_{0}\right)
$$

satisfies the following relations:

$$
\begin{equation*}
R(t)>0, \quad t \in[0,0), \quad R(0)=0, \quad-R^{\prime}(0)-N>0 \tag{4.1}
\end{equation*}
$$

By virtue of the analyticity of the functions occurring in triple x, the first part of the lemma follows [10] from the linear independence of these functions. The second part follows from Assumption 1, Note 1 and the representation

$$
R(t)=\alpha g\left(\theta+\tau_{0}\right) g\left(t+\mathbf{\tau}_{0}\right)\left(m\left(t+\tau_{0}\right)-m\left(\theta+\mathbf{\tau}_{0}\right)\right)
$$

Corol1ary 1. For any sufficiently small $\tau_{0}>0$ there exist analytic functions $h_{1}(t), h_{2}(t)$ and $H(t)=h_{3}(t)$ each being a linear combinationof functions $f\left(t+\tau_{0}\right), g\left(t+\tau_{0}\right)$ and $k\left(t+\tau_{0}\right)$, satisfying the conditions

$$
d^{j} h_{i}(\theta) / d t^{j}=\left\{\begin{array}{cc}
0, & j \neq i-1 \tag{4.2}\\
1, & j=i-1
\end{array} ; \quad j=0,1,2 ; i=1,2,3\right.
$$

To verify the corollary it is enough to note that by virtue of Lemma 1 we have a linear system with determinant $\Delta \neq 0$ for finding the coefficients of each linear combination.

Everywhere below we fix $\theta \in\left(\tau, \tau_{2}\right)$ and the number $\tau_{0}>0$ so small that the conclusion of Lemma 1 is satisfied. We set

$$
\begin{aligned}
& L(t)=\Pi\left(t+\tau_{0}\right), \quad D(t, \varphi)=\left(L^{-1}(t)\right)^{*} \varphi /\left|\left(L^{-1}(t)\right)^{*} \varphi\right| \\
& M(t, \varphi)=L^{-1}(t) W(t, D(t, \varphi)), \quad C(t) z=L^{-1}(t) \pi(t) z \\
& \forall t \in[0, \theta]=I_{1}, \quad \varphi \in K_{1}, \quad z \in R
\end{aligned}
$$

Here $L^{-1}(t): L \rightarrow M_{1}$ is the operator inverse to $L(t)$, the sign * denotes passage to the adjoint operator; as is well known, $\left(L^{-1}(t)\right)^{*}=\left(L^{*}(t)\right)^{-1}$. Operator $L(t)$ is nonsingular for each $t \in I_{1}$; therefore, operator $L^{*}(t)$ is nonsingular too and the family of surfaces $M\left(t, K_{1}\right), t \in I_{1}$, is locally convex [5]. In connection with this there exists $c_{2}>0$ such that (see Lemma 2 in [5]

$$
\begin{aligned}
& (\varphi \cdot M(t, \varphi)-M(t, \psi)) \geqslant c_{2}(\varphi \cdot \varphi-\psi) \\
& \forall t \in[\tau, \theta], \quad \varphi \in K_{1}, \quad \psi \in K_{1}
\end{aligned}
$$

We remark that the representation for $M(t, \varphi)$ has been chosen so that the vector φ is the outward normal to surface $M\left(t, K_{1}\right)$ at point $M(t, \varphi)$.

Note 2. Since

$$
\begin{aligned}
& (\psi \cdot W(t, \psi)-\pi(t) z)=\left(L^{*}(t) \psi \cdot L^{-1}(t) W(t, \psi)-C(t) z\right)= \\
& \quad l(t, \varphi)(\varphi \cdot M(t, \varphi)-C(t) z) \\
& \varphi=L^{*}(t) \psi /\left|L^{*}(t) \psi\right| \in K_{1}, \quad l(t, \varphi)=\left|\left(L^{-1}(t)\right)^{*} \varphi\right|^{-1} \\
& \forall \psi \in K, z \in R, t \in I_{1}
\end{aligned}
$$

function $\lambda(z, t)$ has the same sign and the same zeros as the function

$$
\begin{equation*}
n(z, t)=\min _{\varphi \in K_{1}}(\varphi \cdot M(t, \varphi)-C(t) z) \tag{4.3}
\end{equation*}
$$

We denote $\psi_{*}(z, t) \equiv L^{*}(t) \psi(z, t) /\left|L^{*}(t) \psi(z, t)\right|$ (vector $\psi(z, t)$ was introduced in [4])(*). Then, if $\varphi(z, t)$ is the vector giving the minimurn in (4.3) and if $\lambda(z, t)=0$, then $\varphi(z, t)=\psi_{*}(z, t)$.

Note 3. Let $\varphi_{0}=\varphi(0)$ be the vector from (3.1). By virtue of Corollary 1 and Conditions 4 and 5 , a vector $z_{0} \in R$ exists such that

$$
\begin{equation*}
C(t) z_{0}=M\left(\theta, \varphi_{1}\right) h_{1}(t)+\frac{\partial M\left(\theta, \varphi_{1}\right)}{\partial t} h_{2}(t)+\frac{\partial^{2} M\left(\theta, \varphi_{1}\right)}{\partial t^{2}} h_{3}(t), \quad t \geqslant 0 \tag{4.4}
\end{equation*}
$$

So that, with due regard to (4.2), $M\left(t, \varphi_{1}\right)-C(t) z_{0}=\varepsilon(t),|\varepsilon(t)| \leqslant c_{0}{ }^{*}(\theta$ $-t)^{3}, 0 \leqslant t \leqslant \theta$, where $c_{0}{ }^{*}>0$ is some fixed constant. For any real a, b and c a vector $z^{*}(a, b, c) \in R$ exists yielding the equality
*) Editor's Note. In the English edition this vector is introduced in Lemma 1 on p. 193, PMM Vol. 37, No. 2, 1973.

$$
\begin{align*}
& C(t) z^{*}(a, b, c)=(a R(t)+b H(t)) \varphi_{1}+c H(t) \chi_{1}, \quad t \geqslant 0 \tag{4.5}\\
& \varphi_{\mathrm{r}}=\omega\left(\theta, \varphi_{0}\right) \in K_{\mathrm{I}}, \quad \omega(r, \varphi) \equiv \frac{N^{-1}(r) \varphi}{\mid N^{-1}(r) \varphi}, \quad \varphi \in K_{1}, \quad r \in I_{0} \\
& \chi_{\mathrm{I}}=\frac{\partial}{\partial s^{2}} M(\theta, \omega(\theta, \varphi(\theta))), \quad \psi_{0}=D\left(\theta, \varphi_{1}\right), \quad N(r) \equiv \Pi^{*}(r)\left(L^{*}(r)\right)^{-1}
\end{align*}
$$

Here χ_{1} is a nonzero vector orthogonal to φ_{1} (by expanding, if necessary, the local coordinates we can assume that $\left|\chi_{1}\right|=1$).

Let us clarify Note 3. The right handside of each of the equalities (4.4) and (4.5) has the form

$$
\begin{aligned}
& f\left(t+\tau_{0}\right) u_{0}+g\left(t+\tau_{0}\right) A v_{0}+k\left(t+\tau_{0}\right) B w_{0}, \\
& u_{0} \in M_{1}, \quad v_{0} \in M_{2}, \quad w_{0} \in M_{3}
\end{aligned}
$$

Therefore, it is sufficient to take the vector $z=e^{t_{0} C}\left(u_{0}+v_{0}+w_{0}\right)$ in the left hand side. Notice also that the mapping $N(r) \varphi$ is analytic in $r \in(0, \theta]$, $\varphi \in K_{1}$, so that we can find $c_{3}>0$ such that

$$
\begin{equation*}
|N(r) \varphi-N(\theta) \varphi| \leqslant c_{3}(\theta-r), \quad r \in[\tau, \theta], \quad \varphi \in K_{1} \tag{4.6}
\end{equation*}
$$

We set $z(a, b, c)=z_{0}+z^{*}(a, b, c) ; \theta(t)=\theta-t$. We have

$$
\begin{equation*}
\pi(\theta) z(a, b, c)=W\left(\theta, \psi_{0}\right), \quad \psi(z(a, b, c), \theta)=\psi_{0} \tag{4.7}
\end{equation*}
$$

5. By $0 \leqslant \theta_{1}<\theta_{2}<\ldots<\theta_{m}<\theta$ we denote all the zeros of function $H(t)$ in the half-open interval $[0, \theta)$ and by $\theta_{*}>\tau$, a fixed number $\theta_{*} \in$ $\left(\theta_{m}, \theta\right)$ so close to θ that

$$
\begin{align*}
& \theta^{2}(t)<4 H(t) \leqslant 4 \theta^{2}(t), \quad 1 \leqslant \frac{2 R(t)}{N \theta(t)} \leqslant 2 \tag{5.1}\\
& 8|\varepsilon(t)| \leqslant c_{2}(\theta(t))^{5 / 2} \leqslant c_{2} / 16, \quad \forall t \in I=\left[\theta_{*}, \theta\right) \subset(\tau, \theta)
\end{align*}
$$

We set

$$
\begin{align*}
& E=\max _{t \in I_{1}, \varphi \in K_{1}}\left(\left|C(t) z_{0}\right|+|M(t, \varphi)|\right), \quad Y=\min _{t \in\left[0, \theta_{*}\right]} R(t)>0 \tag{5.2}\\
& a_{0}=2 Y^{-1}\left(E+2^{8} E^{2} N^{2}\left(c_{2} Y^{2}\right)^{-1}+4 c_{2}\right), \quad \theta_{0}=\theta-\delta_{0} \\
& \delta_{0}=\min \left\{\theta-\theta_{*}, Y^{3} 2^{-7} N^{-3},\left(4 a_{0} N c_{2}^{-1}\right)^{2 / 2}, c_{2}^{2} Y^{3} 4^{-7} E^{-2} N^{-3}\right\} \\
& a_{1}=2 a_{0}(N+Y)+(32 E N)^{2}\left(c_{2} Y^{2}\right)^{-1}+4 c_{2}
\end{align*}
$$

Lemma 2. For any $T \in I^{0}=\left(\theta_{0}, \theta\right)$ we can find numbers $a=a(T)$ $\equiv a_{0}, b=b(T), c=c(T) \equiv 4 E(\theta-T)^{-2}$ and a nonempty set $\Omega(T)$ whose closure is contained in interval (T, θ), such that:
а) $\lambda(z(a, b, c), t)<0, t \in[0, T]=X ; \lambda(z(a, b, c), t) \leqslant 0, t \in$ [T, 0];
b) if $\lambda(z(a, b, c), t)=0$ and $t \in[0, \theta)$, then $t \in \Omega(T)$, and vice versa;

$$
\begin{gather*}
\text { c) }|a R(t)+b H(t)| \leqslant a_{1}(\theta-T)^{2 / 2} ;|c H(t)| \leqslant 4 E, t \in[T, \theta] . \\
\text { Proof. We set } \\
b^{*}=b^{*}(T)=-\frac{a R(r)}{H(r)}-\frac{64 E^{2} H(r)}{c_{2} \theta^{*}(T)}-4 c_{2}(\theta(r))^{1 / 2}, r=\theta-\frac{4 N(\theta(T))^{1 / 2}}{Y}>T \tag{5.3}\\
T^{*}=\max \left\{(\theta+r) / 2, \theta-a_{0} N\left(2\left|b^{*}\right|+c_{2}\right)^{-1}\right\} \tag{5.4}
\end{gather*}
$$

For any $\bar{b} \in\left[b^{*}, 0\right]$ we denote the vector $z(a, \vec{b}, c)$, by $z(\bar{b})$, where $a \equiv a(T)$ and $c \equiv c(T)$ are specified by Lemma 2. Then

$$
\begin{equation*}
\lambda(z(\bar{b}), t)<0, \quad t \in X, \bar{b} \in\left[b^{*}, 0\right] \tag{5.5}
\end{equation*}
$$

Indeed, using the orthogonality of φ_{1} and χ_{1} and relations (4.5) and (5.2), we have $(\sigma(t)=\operatorname{sign} H(t))$

$$
\begin{aligned}
& n(z(\vec{b}), t) \leqslant\left(\sigma(t) \chi_{1} \cdot M\left(t, \sigma(t) \chi_{1}\right)-C(t) z(\bar{b})\right)=\left(\sigma(t) \chi_{1} \cdot M\left(t, \sigma(t) \chi_{1}\right)-\right. \\
& \left.C(t) z_{0}\right)-c|H(t)| \leqslant E-4 E|H(t)|(\theta-T)^{-2}<0
\end{aligned}
$$

for those $t \in X$ for which $4|H(t)|>(\theta-T)^{2}$ 。 By virtue of (5.1) we have the inclusion $t \in\left[0, \theta_{*}\right]$ for those $t \in X$ for which $4|H(t)| \leqslant(\theta-T)^{2}$. So that, using (5.1) - (5.3) and the inequality $\theta-T<1$, we obtain, as in [8],

$$
\begin{aligned}
& n(z(\bar{b}), t) \leqslant\left(\varphi_{1} \cdot M\left(t, \varphi_{1}\right)-C(t) z_{0}\right)-(a R(t)+\bar{b} H(t)) \leqslant E- \\
& \quad a_{0} Y+\left|b^{*}\right| \theta^{2}(T) / 4<0
\end{aligned}
$$

Inequality (5.5) has been proved (see Note 2).
Let us show that

$$
\begin{equation*}
\lambda(z(\bar{b}), t)<0, t \in\left[T^{*}, 0\right], t \neq 0, \bar{b} \in\left[b^{*}, 0\right] \tag{5.6}
\end{equation*}
$$

Indeed, $n(z(\bar{b}), t) \leqslant|\varepsilon(t)|-a_{0} R(t)+\left|b^{*}\right| H(t)<0, t \in\left[T^{*}, \theta\right)$. Let us prove the inequality

$$
\begin{equation*}
\lambda\left(z\left(b^{*}\right), r\right)>0 \tag{5.7}
\end{equation*}
$$

We set $\quad n_{*}=n\left(z\left(b^{*}\right), r\right) ; l_{*}=a R(r)+b^{*} H(r) . \quad$ By virtue of (5.1)-(5.3)

$$
\begin{equation*}
c_{\mathrm{a}}>c_{\mathrm{g}}+\mathrm{I}_{4}=c_{\mathrm{g}}-64 E^{2} H^{2}(r) \theta^{-4}(T) c_{\mathrm{g}}^{-1}-4 c_{2} \theta^{1 / 2}(r) H(r)>1 /{ }_{\mathrm{g}} c_{\mathrm{2}} \tag{5,8}
\end{equation*}
$$

Therefore, for the quantity $n_{*}=\left(\varphi \cdot M(r, \varphi)-M\left(r, \varphi_{1}\right)+\varepsilon(r)-l_{*} \varphi_{1}-c H(r) \chi_{1}\right)$, where $\varphi=\varphi\left(z^{\left(b^{*}\right)}, r\right)$, we have the estimate

$$
\begin{aligned}
& n_{*} \geqslant c_{2}\left(\varphi \cdot \varphi-\varphi_{1}\right)-8^{-1} c_{2}(\theta-r)^{5 / 2}-\left(\varphi \cdot l_{*} \varphi_{1}+c H(r) \chi_{1}\right) \geqslant \\
& c_{2}-8^{-1} c_{2}(\theta(r))^{5 / 2}-\left[\left(c_{2}+l_{*}\right)^{2}+c^{2} H^{2}(r)\right]^{1 / 2}
\end{aligned}
$$

Hence from (5.8) we obtain

$$
n_{*} \geqslant-l_{*}-8^{-1} c_{2}(\theta(r))^{5 / 2}-c^{2} H^{2}(r) c_{2}^{-1}>0
$$

By virtue of Note 2, inequality (5.7) is proved.
Finally, let us show that

$$
\lambda(z(0), t) \equiv \lambda(z(a, 0, c), t)<0, t \in[0, \theta)
$$

In accord with (5.5) it suffices to verify this only for $t \in[T, \theta)$. For such t we have

$$
n(z(0), t) \leqslant\left(\varphi_{1} \cdot M\left(t, \varphi_{1}\right)-C(t) z_{0}-a_{0} R(t) \varphi_{1}\right) \leqslant|\approx(t)|-a_{0} R(t)<0
$$

as required.
Let us complete the proof of Lemma 2. Let $b(T)$ be the least upper bound of the set of all $\bar{b} \in\left[b^{*}, 0\right]$ for which the function $\lambda(z \overline{(b)}, t)$ vanishes at least at one point of the interval $t \in\left(T, T^{*}\right)$. Then relations a) and b) of Lemma 2 are fulfilled, while estimate c) follows from (5.1)-(5.3)

$$
\begin{aligned}
& |a(T) R(t)+b(T) H(t)| \leqslant a_{0} R(t)+\left|b^{*} H(t)\right| \leqslant a_{1}(\theta-T)^{2 / 2} \\
& t \in[T, \theta)
\end{aligned}
$$

6. Using Assumption 1 we complete the proof of Theorem 1. Let $T_{i} \rightarrow \theta-0$, $i \rightarrow \infty$. By z_{i} we denote the point $z\left(a\left(T_{i}\right), b\left(T_{i}\right), c\left(T_{i}\right)\right)$ (see Lemma 2), by $l_{i}(t)$ and $c_{i}(t)$ the functions $a\left(T_{i}\right) R(t)+b\left(T_{i}\right) H(t)$ and $c\left(T_{i}\right) H(t)$, by Ω_{i} the set $\Omega\left(T_{i}\right)$. If $t \in \Omega_{i}$, we denote the vector $\Gamma\left(t, \psi\left(z_{i}, t\right)\right)$ by Qit. By virtue of Note 2, when $t \in \boldsymbol{\Omega}_{i}$ we have

$$
\begin{align*}
& M_{i}(t) \equiv M\left(t, \quad \omega\left(t, \varphi_{i t}\right)\right)=C(t) z_{i}=M\left(t, \omega\left(\theta, \varphi_{0}\right)\right)+ \tag{6.1}\\
& \quad l_{i}(t) \varphi_{1}+c_{i}(t) \chi_{1}-\varepsilon(t)
\end{align*}
$$

Multiplying (6.1) scalarly by φ_{1} and using the local convexity of $M(t, \varphi)$, we obtain.

$$
\begin{align*}
& 0 \leqslant c_{2}\left(\varphi_{1} \cdot \varphi_{1}-\omega\left(t, \varphi_{i t}\right)\right) \leqslant\left(\varphi_{1} \cdot M\left(t, \varphi_{1}\right)-M_{i}(t)\right)= \tag{6.2}\\
& \quad-l_{i}(t)+\left(\varphi_{1} \cdot \varepsilon(t)\right)=c_{2} k_{i}^{2}(t)
\end{align*}
$$

Having made use of the inequality $\left.|a| a\right|^{-1}-\left.b|b|^{-1}\right|^{2} \leqslant|a-b|^{2} \cdot(|a|$ $|b|)^{-1}$, when $t \in \Omega_{i}$ we have (by virtue of (6.2), (4.6), (5.1) and estimate c) in Lemma 2)

$$
\begin{gather*}
\left|\varphi_{0}-\varphi_{i t}\right|^{2} \leqslant\left(\left|N(\theta) \varphi_{1}\right|\left|N(t) \omega\left(t, \varphi_{i t}\right)\right|\right)^{-1} \mid N(\theta) \varphi_{1}- \tag{6.3}\\
N(t) \varphi_{1}+\left.N(t)\left(\varphi_{1}-\omega\left(t, \varphi_{i t}\right)\right)\right|^{2} \leqslant N_{1}^{2}\left[c_{3} \theta(t)+\right. \\
\left.2 N_{0} k_{i}(t)\right]^{2} \leqslant\left\{N_{1}\left(c_{3}+N_{0}\left(2 a_{1} / c_{2}+1\right)\right)\right\}^{2}\left(\theta-T_{i}\right)^{2 / 2} \\
N_{1}=\sup \left\|N^{-1}(t)\right\|, t \in I^{0} ; \quad N_{0}=\sup \|N(t)\|, t \in I^{0}
\end{gather*}
$$

Here || - || denotes the norms of the corresponding linear operators. Therefore, for all sufficiently large i (for all $i=1,2, \ldots$) if we discard a finite number of terms)

$$
\varphi_{i t}=\varphi\left(\bar{\sigma}_{i t}\right) \in Q_{\varphi_{0}}, N(\theta) \omega\left(t, \varphi_{i t}\right) /\left|N(\theta) \omega\left(t, \varphi_{i t}\right)\right|=\varphi\left(\bar{s}_{i t}\right) \in O_{\varphi_{\varphi}}
$$

where $\bar{\sigma}_{i t}$ and $\bar{s}_{i t}$ are the local coordinates of the corresponding vectors. By virtue of (6.3) a sequence $\varepsilon_{i} \rightarrow+0, i \rightarrow \infty$, exists such that for any i and all $t \in \Omega_{i}$

$$
\begin{equation*}
\left|\bar{s}_{i t}\right| \leqslant \varepsilon_{i}, \quad\left|\bar{\sigma}_{i t}\right| \leqslant \varepsilon_{i} \tag{6.4}
\end{equation*}
$$

From the Taylor expansion with a remainder term in Lagrange form follows

$$
\begin{align*}
& M(r, \omega(\theta, \varphi(\bar{s})))=M\left(r, \varphi_{\mathrm{T}}\right)+\sum_{j=2}^{v} \frac{\partial M(r, \omega(\theta, \varphi(0)))}{\partial s^{j}} s^{j}+O\left(|\bar{s}|^{2}\right) \tag{6.5}\\
& \left|O\left(|\bar{s}|^{2}\right)\right| \leqslant c_{0}|\bar{s}|^{2}
\end{align*}
$$

Here c_{0} is the common constant for all $r \in\left[\theta_{*}, \theta\right]$ and all $\varphi(\bar{s}) \in O_{\varphi_{0}}$. From (6.1) and (6.5) follows

$$
\begin{align*}
& l_{i}(t) \varphi_{\mathrm{I}}+c_{i}(t) \chi_{\mathrm{I}}-\varepsilon(t)=\sum_{j=2}^{v} \frac{\partial M(t, \omega(\theta, \varphi(0)))}{\partial s^{j}} s_{i t}^{j}+O\left(\left|\bar{s}_{i t}\right|^{2}\right) \tag{6.6}\\
& t \in \Omega_{\mathrm{i}}
\end{align*}
$$

Multiplying (6,6) scalarly by $\partial \omega(\theta, \varphi(0)) / \partial s^{k}$, we obtain

$$
\begin{align*}
& c_{i}(t) M_{k 2}(\theta)+\varepsilon_{k}(t)=\sum_{j=2}^{v} M_{k j}(t) s_{i t}^{j}+\Delta_{k i}(t) ; t \in \Omega_{i}, \quad k=2, \ldots, v \tag{6.7}\\
& \left|\varepsilon_{k}(t)\right| \leqslant 8^{-1} c_{*}(\theta-t)^{s / 2}, \quad\left|\Delta_{k i}(t)\right| \leqslant c_{*}\left|\bar{s}_{i t}\right|^{2} \\
& c_{*}=\left(1+c_{0}+c_{2}\right)\left(1+\sum_{k=2}^{v}\left|\frac{\partial \omega(\theta, \varphi(0))}{\partial s^{k}}\right|\right) \\
& M_{k j}(t) \equiv M_{k j}\left(t, \varphi_{0}\right), \quad M_{k j}(t, \varphi(\bar{s}))=\left(\frac{\partial \omega(\theta, \varphi(\bar{s}))}{\partial s^{k}} \frac{\partial M(t, \omega(\theta, \varphi(\bar{s})))}{\partial s^{j}}\right) \tag{6.8}\\
& k, j=2, \ldots, v
\end{align*}
$$

Solving the equation system (6.7) relative to $s_{i t}^{m}, m=2, \ldots, v$ (the quadratic form with matrix (6.8) is positive definite, so that the matrix $B_{m k}(t)$ inverse to matrix $M_{k j}(t)$ exists and is continuous in $t \in\left[\theta_{*}, \theta\right]$), we have (see (5.1); $\delta_{2}{ }^{m}$ is the Kronecker symbol)

$$
\begin{align*}
& s_{i i}^{m}+\gamma_{i}^{m}(t)=c_{i}(t)\left(\delta_{2}^{m}+\xi_{*}^{m}(t)\right)+\varepsilon_{m}{ }^{*}(t), \quad t \in \Omega_{i} \tag{6.9}\\
& \left|\xi_{*}^{m}(t)\right|=\left|\sum_{k=2}^{v} B_{m k}(t) m(k, t)\right| \leqslant \bar{c} \sup _{t \in\left[T_{i}, \theta\right]} \sum_{k=2}^{v}|m(k, t)|=\delta_{i} \rightarrow 0 \\
& i \rightarrow \infty \\
& \left|\varepsilon_{m}{ }^{*}(t)\right|=\left|\sum_{k=2}^{v} B_{m k}(t) \varepsilon_{k}(t)\right| \leqslant \bar{c} H(t)(\theta-t)^{t / 2} \leqslant c_{i}(t) \delta_{i}^{*} \\
& \left|\gamma_{i}^{m}(t)\right|=\left|\sum_{i=2}^{v} B_{m k}(t) \Delta_{k i}(t)\right| \leqslant \bar{c} c_{*}\left|\bar{s}_{i 1}\right|^{2}
\end{align*}
$$

$$
\begin{aligned}
& m(k, t)=M_{k 2}(\theta)-M_{k 2}(t), \bar{c}=\left(c_{*}+1\right)\left(1+\sup _{t \in\left[\theta_{*}, \theta\right]} \sum_{m, k=2}^{v}\left|B_{m k}(t)\right|\right) \\
& \delta_{i}^{*}=\bar{c}(4 E)^{-1}\left(\theta-T_{i}\right)^{8 / x} \rightarrow 0, \quad i \rightarrow \infty
\end{aligned}
$$

From relations (6.9) it follows (cf. [8]) that for all sufficiently large i

$$
\begin{align*}
& s_{i t}^{m}=c_{i}(t)\left(\delta_{2}^{m}+\alpha_{i}^{m}(t)\right), \quad t \in \Omega_{i}, \quad m=2, \ldots \tag{6.10}\\
& \left|\alpha_{i}^{m}(t)\right| \leqslant \delta_{i}+\delta_{i}^{*}+27 v^{2} \bar{c} c_{*} \varepsilon_{i} \rightarrow 0, \quad i \rightarrow \infty
\end{align*}
$$

For the determination of the local coordinates $\sigma_{i t}{ }^{m}$ we have the relation

$$
\begin{align*}
& \varphi_{i t}=N(t) \omega\left(\theta, \varphi\left(\bar{s}_{i t}\right)\right) /\left|N(t) \omega\left(0, \varphi\left(\bar{s}_{i t}\right)\right)\right|= \tag{6.11}\\
& \quad \varphi\left(\bar{s}_{i t}\right)+\omega_{i}(t), i \in \Omega_{i}
\end{align*}
$$

where, as in (6.3),

$$
\left|\omega_{i}(t)\right| \leqslant N_{\mathrm{I}} c_{3}(\theta-t) \leqslant c_{i}(t)\left(N_{\mathrm{I}} c_{3} E^{-1}\right)\left(\theta-T_{i}\right)^{2}(\theta-t)^{-1}
$$

By virtue of (5.4) and (5.6) we have

$$
\theta-t \geqslant \theta-T_{i}^{*}=\min \left\{\theta-r_{i}, a_{0} N\left(2\left|b_{i}^{*}\right|+c_{2}\right)^{-1}\right\}
$$

Taking into account the inequality

$$
\left|b_{i}^{*}\right| \leqslant\left(\theta-r_{i}\right)^{-1}\left(8 a_{0} N+4^{6} E^{2} N^{3}+c_{2}\right)
$$

following from (5.3), expanding (6.11) by Taylor's formula and arguing analogously to (6.6) - (6.10), we obtain

$$
\begin{align*}
& \sigma_{i t}{ }^{m}=c_{i}(t)\left(\delta_{2}{ }^{m}+\beta_{i}{ }^{m}(t)\right), \quad t \in \Omega_{i}, \quad m=2, \ldots, v \tag{6.12}\\
& \left|\beta_{i}^{m}(t)\right| \leqslant \beta_{i} \rightarrow 0, \quad i \rightarrow \infty
\end{align*}
$$

where all the β_{i} depend neither on m, nor on $t \in \Omega_{i}$.
Let us compute (cf. Sect. 2 in [8]) the quantity $\mu_{i}(t)=\mu\left(t, \psi\left(z_{i}, t\right), \theta, \psi\left(z_{i}\right.\right.$, $\theta)$). By virtue of (1.3), (6.1), (4.7) and Note 2, for any $t \in \Omega_{i}$ we have

$$
\begin{aligned}
& \eta_{i}(t)=\mu_{i}(t)\left|\Pi_{i}^{*}(t) \psi\left(z_{i}, t\right)\right|=f(t)\left(\varphi_{i t} \cdot p\left(\varphi_{i t}\right)-p\left(\varphi_{0}\right)\right)- \\
& \quad g(t)\left(\varphi_{i t} \cdot q\left(\varphi_{i t}\right)-q\left(\varphi_{0}\right)\right)
\end{aligned}
$$

Expanding the expression within the parentheses by Taylor's formula, we obtain

$$
\begin{aligned}
& \eta_{i}(t)=\frac{1}{2} f(t) \sum_{m, k=2}^{v} p_{m k}\left(\varphi_{0}\right) \sigma_{i t}{ }^{m} \sigma_{i t}{ }^{k}- \\
& \quad \frac{1}{2} g(t) \sum_{m, k=2}^{v} q_{m k}\left(\varphi_{0}\right) \sigma_{i t}{ }^{m} \sigma_{i t}^{k}+o_{t}\left(\left|\bar{\sigma}_{i t}\right|^{2}\right), \quad t \in \Omega_{i}
\end{aligned}
$$

where $o_{t}\left(|\bar{s}|^{2}\right) /|\bar{s}|^{2} \rightarrow 0,|\bar{s}| \rightarrow 0$, uniformly in $t \in\left[\theta_{*}, \theta\right]$. Substituting the values for the local coordinates from (6.12), we have (see (3.1), inclusion $t \in$ $\left[\theta_{*}, \theta\right]$ and Note 1)

$$
\begin{gather*}
c_{i}^{-2}(t) \eta_{i}(t)=1 / 2 \alpha g(t)[m(t)-1] p_{22}(\varphi(0))+\sigma(i, \quad t) \leqslant \tag{6,13}\\
1 / 2 \alpha g^{*}\left[m\left(\theta_{*}\right)-1\right] p_{22}(\varphi(0))+\sigma(i, \quad t), \quad t \in \Omega_{i}
\end{gather*}
$$

where $(\operatorname{see}(6.12)) \quad g^{*}=\min t \in\left[\theta_{*}, \theta\right] g(t)>0$ and $|\sigma(i, t)| \rightarrow 0, i \rightarrow \infty$, uniformly in $t \in \Omega_{i}$. Therefore, $\mu_{i}(t)<0$ for any $t \in \Omega_{i}$ for all sufficiently large i. By virtue of assertions a) and b) in Lemma 2 this signifies that all the hypotheses of Theorem 2 in [8] have been fulfilled for point z_{i}. Theorem 1 is proved in Assumption 1 is fulfilled.
7. Assumption 2. There exists $0<\tau_{1}<T_{0}$ such that $m(r)<1$ for $0<r<\boldsymbol{\tau}_{\mathbf{I}}$.

To carry out the proof of Theorem 1 under the conditions of Assumption 2 it is sufficient to set $\tau=0$, to choose $\tau_{2} \Subset\left(\tau, \tau_{1}\right)$ such that $m^{\prime}(r)=(f(r) /(\alpha g$ $(r)))^{\prime} \neq 0$ for $r \in \mathrm{I}=\left(\tau, \tau_{2} \mathrm{~J}\right.$ (this is possible because the functions $f(r)$ and $g(r)$ expand into power series in parameter r in a neighborhood of $r=0$, to choose $\theta \in \Gamma$ and $\tau_{0}>0$ so as to satisfy the conclusion of Corollary 1 and the relations (4.2) and also such that the function

$$
\begin{aligned}
& R(t)=\left(f\left(t+\tau_{0}\right) g\left(\theta+\tau_{0}\right)-f\left(\theta+\tau_{0}\right) g\left(t+\tau_{0}\right)\right) \omega \\
& \omega=\operatorname{sign} m^{\prime}(s), \quad s \in \Gamma
\end{aligned}
$$

satisfies (4.1), and to repeat verbatim the arguments in Sections 4-6 up to formula (6.13).
8. We now present an example showing that condition A in [2] in the general case is not a necessary condition for the global optimality of the upper layer time

$$
\begin{equation*}
d z_{1} / d t=z_{2}-u, \quad d z_{2} / d t=v ; \quad|u| \leqslant 1, \quad|v| \leqslant 1 \tag{8,1}
\end{equation*}
$$

where z_{1}, z_{2}, u and v are two-dimensional vectors. The terminal set M is the subspace $\left\{z: z_{1}=0\right\}$. Here $\pi z=z_{1} ; W(t, \varphi)=h(t) \varphi, h(t)=t-t^{2} / 2,0 \leqslant t \leqslant 2$. The time $T(z)$ is the smallest positive root of the equation $F(t, z)=-\left|z_{1}+t z_{3}\right|^{2}$ $\dagger\left(t-t^{3} / 2\right)^{2}=0$. If $T(z) \leqslant 1$, the optimality of $T(z)$ follows from [2]. Let us show that time $T(z) \in(1,2)$ also is optimal although condition A may not hold on the whole interval $[0,2)$.

We suggest that for escape starting from point $z_{0}, T\left(z_{0}\right)=T_{0} \in(1,2)$, we set

$$
\begin{aligned}
& \bar{v}(s)=\left(T_{0}-s\right)^{-1} u(s)+\left(1-\left(T_{0}-s\right)^{-1}\right) \varphi_{0}, \quad 0 \leqslant s \leqslant T_{0}-1 \\
& \bar{v}(s)=u(s), \quad 0 \leqslant T_{0}-s \leqslant 1
\end{aligned}
$$

where $\varphi_{0}=\varphi\left(z_{0}\right)$ is given by the equality (cf. [4]) $h\left(T_{0}\right) \varphi_{0}=z_{10}+T_{0} z_{20}$. Then for the motion $z(s), 0 \leqslant s \leqslant T_{0}, z(0)=z_{0}$, we have

$$
\begin{aligned}
& F\left(T_{0}-s, z(s)\right)=-\mid z_{10}+s z_{20}+\int_{0}^{s}(s-r) \bar{v}(r) d r-\int_{0}^{s} u(r) d r+\left(T_{0}-s\right) z_{30}+ \\
& \left.\quad\left(T_{0}-s\right) \int_{0}^{s} \bar{v}(r) d r\right|^{2}+h^{2}\left(T_{0}-s\right)=h^{2}\left(T_{0}-s\right)-\left|\left(T_{0}-s-\frac{\left(T_{0}-s\right)^{2}}{2}\right) \varphi_{0}\right|^{2}=0
\end{aligned}
$$

for all $s \in\left[0, T_{0}-1\right]$. Let us show that $T^{\prime}(z(s)) \equiv T_{0}-s$ is fulfilled for all such
s. We proceed by contradiction. Let $0<T(z(s))<T_{0}-s$. By virtue of the definition of T_{0} we have $0 \leqslant k=\partial F\left(T_{0}, z_{0}\right) / \partial t$, and, if $k=0$, then $n=\partial^{2}$ $F\left(T_{0}, z_{0}\right) / \partial t^{2} \leqslant 0$. Using the inequality $k \geqslant 0$, by direct calculations we obtain

$$
\frac{\partial F\left(T_{0}-s, z(s)\right)}{\partial t} \geqslant\left(T_{0}--s\right)\left(2-T_{0}+s\right)\left(s-\left(\varphi_{0} \cdot \int_{0}^{s} \bar{v}(r) d r\right)\right) \geqslant 0
$$

where equality to zero is possible only if $k=0$ and $u(r) \equiv \varphi_{0} \quad$ almost everywhere on $[0, s]$. But in the latter case

$$
\frac{\partial^{2} F\left(T_{0}^{\prime}-s, z(s)\right)}{\partial \iota^{2}}=n+s\left(2+s-2 T_{0}\right)<0
$$

From what has been said it follows that the function $\quad p(t)=F(t, z(s))$ has at least three zeros (with regard to their multiplicities) on the interval ($0, T_{0}-s$ if $k \neq 0$ and four zeros if $k=0$. In the latter case we obtain a contradiction that, since $p(0)$ <0 and $p(-\infty)>0$, a fourth-degree polynomial has five roots. However, if $k \neq 0$, then $p(t)>0$ for all $t>T_{0}-s$ sufficiently close to $T_{0}-s ; p(2) \leqslant u$, which yields four roots on ($\left.T_{0}-s, 2\right]$. As before, we discover five roots on the negative semiaxis. A contradiction.

Now let $T\left(z\left(s_{0}\right)\right)=0, s_{0} \in\left(0, T_{0}-1\right]$. Without loss of generality we can take it that s_{0} is the smallest one of such instants. By what has been proved, $T(z(s)) \equiv$ $T_{0}-s, 0 \leqslant s<s_{0}$, so that $F\left(0, z\left(s_{0}\right)\right)=0 ; F\left(T_{0}-s_{0}, z\left(s_{0}\right)\right)=0 ; F\left(t, z\left(s_{0}\right)\right) \leqslant 0$, $0 \leqslant t \leqslant T_{0}-s_{0} . \quad$ Since $\quad z_{1}\left(s_{0}\right)=0, \quad F\left(t, z\left(s_{0}\right)\right)=t^{2}\left(-\left|z_{2}\left(s_{0}\right)\right|^{2}+(1-t / 2)^{2}\right)$.
Hence

$$
\begin{aligned}
& \left|z_{2}\left(s_{0}\right)\right|^{2}=\left(1-\left(T_{0}-s_{0}\right) / 2\right)^{2} \\
& F\left(t, z\left(s_{0}\right)\right)=1 / 4 t^{2}\left(T_{0}-s_{0}-t\right)\left(2-t+2-\left(T_{0}-s_{0}\right)\right)>0 \\
& 0<t<T_{0}-s_{0}
\end{aligned}
$$

A contradiction. The inequality $T(z(s)) \geqslant T_{0}-s, 0 \leqslant T_{0}-s \leqslant 1$, follows from [2].

Now let $\delta>0$. Having chosen $\varepsilon>0$ sufficiently small and setting $v(s) \equiv \Psi_{0}$, $0 \leqslant s \leqslant \varepsilon ; v(s) \equiv \bar{v}(s-\varepsilon), s>\varepsilon$, we guarantee avoidance of contact during time $T_{0}-\delta$ (see [2] for the proof).
9. A large class of pursuit problems satisfying Conditions $1-5$ of the present paper (remember that Conditions $1-3$ are taken from [3]) have been presented in Sect. 5 of [9]. Thus, for this class we have obtained a necessary and sufficient condition for the global optimality of first absorption time.

The author thanks N. N. Krasovskii and E. F. Mishchenko for attention.

REFERENCES

1. Krasovskii, N. N. and Subbotin, A. I., Optimal strategies in a linear differential game. PMM. Vol. 33, No. 4, 1969.
2. Gusiatnikov, P. B. and Nikol'skii, M. S., On the optimality of pursuit time. Dok1. Akad, Nauk SSSR, Vol. 184, No. 3, 1969.
3. Gusiatnikov, P. B., Necessary optimality conditions in a linear pursuit problem. PMM Vol. 35, No. 5, 1971.
4. Gusiatnikov, P. B., Necessary optimality condition for the time of first absorption. PMM Vol. 37, No. 2, 1973.
5. Gusiatnikov, P. B., On a statement of linear pursuit problems, Differents. Uravn., Vol. 8, No. 8, 1972.
6. Lee, E. B. and Markus, L. , Fundamentals of Optimal Control Theory. Moscow, "Nauka", 1972.
7. H a d wiger, H. , Vorlesunger über Inhalt, Oberflảche und Isoperimetrie. Berlin -- Göttingen - Heidelberg, Springer - Verlag, 1957.
8. Gusiatnikov, P. B. . The necessity of a sufficient optimality condition for pursuit time. Lzv. Akad. Nauk SSSR, Tekhn. Kibernetika, No. 1, 1978.
9. Gusiatnikov, P. B., On a particular criterion of optimal time. PMM Vol. 40, No. 5, 1976.
10. Hartman, P., Ordinary Differential Equations. New York, J. Wiley and Sons, Inc., 1964.
